笔趣阁 > 在异界学习黑魔法的日子 > 第117章 第 117 章

第117章 第 117 章(6)

  ←  章节目录  →  

他俩相当于班上俩学霸,不仅回回考试满分,且回回作业满分,,且作业草稿纸有,且这个世界上无作业参考答案这怎么能对着他俩说你考试时抄人家的啊

从头到尾水准都很稳定啊,又不是单单一次考试强,人家次次考试满分,这都有人空口说他俩抄答案,我就无语牛顿的那本原理,上世纪还有他的一个铁粉物理学家某位诺奖得主在研读,说他的证明宛如"奥林匹斯山下来的"

不理解

这啥意思的我解释一下,奥林匹斯山是希腊神居住的地方

我就问,一个给出了超级大部头量级的极其精妙证明的作者,为什么能被污蔑成票窃者这世上还有谁能给他抄我就直说了,从结果来看,没有,他就是那个时代最聪明的人,没有之一

s我这两天在思考我是不是吹爵爷吹得太朴素了,我之前的作话,感觉都不太够体现出我的脑残粉身份

让我想想怎么才能让人更明确地意识到他有多牛,因为很多人觉得放一个普通的受过高等教育的现代人回去也能代替牛顿嘛,其实我觉得小说里这样写很爽啦,那种走一遍科技树的感觉,很爽,我喜欢看这种,但是总能看到真心这么觉得的人就很郁闷,所以我就拿一个现代的本科生做对比,主要论证一个观点,就算放一个成绩尚可的生活在信息爆炸的21世纪的本科生比如我回17世纪,也不可能代替牛顿建立现代科学体系,现在就一个个对着他的成果进行对比,开始一

1平方反比定律推行星椭圆轨道,以前会,毕竟看过标答,现在让我回头推我已经不会了,刚刚凭空想了十分钟,无思路,多给点时间没准能回忆起来

2平方反比定律推开普勒第二定律,不会,没做过这个题,没有参考答案的情况下,允许使用微积分的情况下,给我个一个月思考没准有机会吧

3平方反比定律推开普勒第三定律,同上,没做过,等等好像做过起来有那么点眼熟,那没准我能想起来

4微积分,本人拥有短期的给人上高数的经验,可以简单复述微积分基础,而且我比牛顿撞长教别人,微弱的优势出现了。5万有引力定律求潮汐高度,不会,我甚至没思路6正弦级数推导,不会,我能背下来级数是啥就不错了7其他常见级数同上

8光学原理,对不起,我光学学得最烂了,这个不要指望我能记得哪怕一星半点,我就记得折射和反射9牛一牛二牛三,复述会

10最速降线问题,我应该会吧看起来做过很多次,回忆回忆应该有救

11当两个力同时作用干一个物体时,这个物体将沿着平行四边形的对角线运动,所需时间等干两个力分别沿两边运动所用的时间之和力的分解我会而且可以一步到位直角坐标系,美滋滋12牛顿怎么写了这么多页的力的分

13公共重心,我会个概念,但我不一定到时候还记得要补充这个东西

14如果物体沿椭圆轨道运动,求证指向椭圆的一个焦点的向心力定太有思

15要不然到此为止吧我感觉只要是证明我全都不太有思路而且怎么全是圆锥曲线啊换我来我估计全程解析几何16忍不住歪题开始思考,开普勒什么神人啊,手算行星轨道

17飞快且极其大致地回顾完了小半原理,可能是我物理基础太差,大多数东西我甚至不懂为啥要证这个,怎么想到证这个的,以及几何实在太多了,我上我真不行,我上就变成一整本全靠解析几何的暴力破解了不过我突然有了灵感,改天可以写穿越之我居然成了牛顿只会解析几何的我如何完成世界任务,有内味了

18第6章如何求已知轨道上物体的运动终于看到会的了我会啊这个我学过

19通常用任意多有限的项和元的方程,不能求出以任意直线切割的卵形面积的证明,我好像又不会了读题读了半天对不起我激学好像也很烂

20物体的上升下落,我会我会高中题终于又有我会的了21确定物体受任意向心力时的运动轨道我会22这咋还要证明我不会

23质点,我知道,证明行星可以看成质点,我不会

24其他的妈的不看了

  ←  章节目录  →  
最新小说: 在异界学习黑魔法的日子 老婆能有什么坏心眼呢 饲养小怪物 七零之炮灰首富早夭的小女儿回来了 靠拍烂片成为首富 真千金她是花滑女王[重生] 人形兵器[无限] 与咒灵为邻后我成了最强包租公 七零文工团小厨娘 我师姐不可能是女装大佬 be文求生指南(快穿)