可能在最近一两年之内得到解决。
周氏解析法,等于创建了一个新的框架,虽然不完善,但是有很大的开发潜力。
不多时,周易很快便见到了自己未来的两个老师,一个是皮埃尔·德利涅,一个是约翰·米尔诺。
德利涅首先说道:
“丘已经跟我们说了很多缘故,所以我们两个商量了一下,不准备限制你的发展,可以选择加入我的课题组,也可以加入米尔诺现在的课题组,又或者你自己选择一个方向发展。
如果你对我们两个的课题都不感兴趣,自己选择方向,毕业要求也很简单,跟丘城同的要求一样,证明一项世界级的数学猜想。”
米尔诺也说道:
“其实我更希望你来学微分拓扑或者K—理论这个方向,提出猜想比证明猜想更重要。”
在数学中,K-理论(K-theory)是多个领域使用的一个工具。在代数拓扑中,它是一种异常上同调,
在物理学中,K-理论特别是扭曲K-理论(twistedK-theory)出现在II型弦理论(TypeIIstringtheory),其中猜测它们可分类D-膜(D-branes)、拉蒙-拉蒙场强(Ramond-Ramondfield)以及广义复流形上某些旋量。
而这个理论最早的发现者,就是亚历山大·格罗滕迪克。
周易说道:
“多谢两位老师好意,我更想研究3n+1猜想又或者孪生素数猜想亦或者哥德巴赫猜想。”
二人听完倒是没多大的意外。
周氏解析法如果进行二次开拓,用来对付一些数论,那将是极为有利的工具。
不少普林斯顿解析数论方向的专家都在研究周氏解析法。
一些古典几何方向的人更是在研究周氏几何。
“那行吧,毕业要求也跟你说了,以你的天赋,加上解析法的开拓,只是毕业不难。
但是如果你在这边纸醉金迷,浪费自己的天赋,也许数年都难以毕业。更是对不起丘城同为你谋划这么多。”
米尔诺以告诫的口吻跟周易说道。
想要成为新一代数学大师,或许就得跟舒尔茨一样,形成自己的学派。
米尔诺必须得提醒一下他。
德利涅又说道:
“鉴于你还年轻,有些年少轻狂的脾气,所以让你在想三天,三天之后在给我们你的最后决定。”
周易尊敬说道:
“好的,老师。”
“你入学手续问题,檀明明已经给你办下来了,鉴于你的数学贡献,普林斯顿也会给你全额奖学金。不用担心经济问题。
但是,我也与米尔诺教授有同样的看法,希望你保持本心,不要浪费自己的天赋,有天赋与有巨大的成就,是两回事。”
德利涅作为周易导师之一,也十分严肃的教导道。
米尔诺九十多岁了,德利涅也快八十岁了,二人波澜的一生见过不少的天才,也见过了不少的华人天才,比如丘陶二人。
但是周易这种天赋,比起年少成名的陶来说,都要强上不少。
或者在未来,周易能够做到他们没有做到的事情。
比如证明黎曼猜想,或者胆子更大一点全部解决掉剩余的六大千禧难题(包含黎曼猜想)。
拿个奖不算什么,他们希望周易成为堪比亚历山大·格罗滕迪克那样的人,或许比格罗滕迪克更强。
周易还有70年的时间。
未来数学走向何方,怎么发展,这比拿奖或许更有意义。
没有什么比引导未来数学百年的发展史更为激动人心,也许还不止百年。
周易能感受到他们的关切之心,说道:
“好的,感谢两位老师。”
米尔诺好像想到了什么,也有些清楚周易的想法,说道:
“哈洛德·贺欧夫各特好像在用你的解析法研究强哥德巴赫猜想。”
周易:!!!。
“我会努力的。”
“好,那就这样吧。”
德利涅淡淡说道。
“老师再见。”
周易一边走,一边想这个猛人与哥德巴赫猜想。
在13年的时候,哈洛德·贺欧夫各特已经彻底的证明了弱哥德巴赫猜想。
瑛国数学家华林,在1770年出版的《代数沉思录》一书中,首次提出了如下形式的哥德巴赫猜想:
1.每个大于2的偶数都是两个素数之和;
2.每个奇数或者是一个素数,或者是三个素数之和。
第二点就是弱哥德巴赫猜想。
一个标准的现代版本是这样的:
I.N=P_1+P_2;当(N≥6)是偶数;
II.N=P_1+P_2+P_3,当(N≥9)(本章未完,请翻页)
记住手机版网址:m.bqgw123.com